Researchers Glaucio Paulino (left) and Evgueni Filipov show a large origami structure that can be folded into a much smaller space. Filipov is from the University of Illinois at Urbana-Champaign; Paulino is from the Georgia Tech School of Civil and Environmental Engineering. (Photo: Rob Felt) |
From shipping and construction to outer space, origami could put a folded twist on structural engineering.
Researchers from the University of Illinois at Urbana-Champaign, the Georgia Institute of Technology and the University of Tokyo have developed a new “zippered tube” configuration that makes paper structures stiff enough to hold weight yet able to fold flat for easy shipping and storage. Their method could be applied to other thin materials, such as plastic or metal, to transform structures ranging from furniture and buildings to microscopic robots. (Watch how the "zippered tube" works below.)
Illinois graduate researcher Evgueni Filipov, Georgia Tech professor Glaucio Paulino and University of Tokyo professor Tomohiro Tachi published their work September 7 in the journal Proceedings of the National Academy of Sciences.
Origami structures would be useful in many engineering and everyday applications, such as a robotic arm that could reach out and scrunch up, a construction crane that could fold to pick up or deliver a load, or pop-up furniture. Paulino sees particular potential for quick-assembling emergency shelters, bridges and other infrastructure in the wake of a natural disaster.
“Origami became more of an objective for engineering and a science just in the last five years or so,” Filipov said. “A lot of it was driven by space exploration, to be able to launch structures compactly and deploy them in space. But we’re starting to see how it has potential for a lot of different fields of engineering. You could prefabricate something in a factory, ship it compactly and deploy it on site.”
The researchers use a particular origami technique called Miura-ori folding. They make precise, zig-zag folded strips of paper, then glue two strips together to make a tube. While the single strip of paper is highly flexible, the tube is stiffer and does not fold in as many directions.
The researchers tried coupling tubes in different configurations to see if that added to the structural stiffness of the paper structures. They found that interlocking two tubes in zipper-like fashion made them much stiffer and harder to twist or bend. The structure folds up flat, yet rapidly and easily expands to the rigid tube configuration.